Extensions 1→N→G→Q→1 with N=C3 and Q=C32×C4○D4

Direct product G=N×Q with N=C3 and Q=C32×C4○D4
dρLabelID
C4○D4×C33216C4oD4xC3^3432,733

Semidirect products G=N:Q with N=C3 and Q=C32×C4○D4
extensionφ:Q→Aut NdρLabelID
C31(C32×C4○D4) = C32×C4○D12φ: C32×C4○D4/C6×C12C2 ⊆ Aut C372C3:1(C3^2xC4oD4)432,703
C32(C32×C4○D4) = C32×D42S3φ: C32×C4○D4/D4×C32C2 ⊆ Aut C372C3:2(C3^2xC4oD4)432,705
C33(C32×C4○D4) = C32×Q83S3φ: C32×C4○D4/Q8×C32C2 ⊆ Aut C3144C3:3(C3^2xC4oD4)432,707

Non-split extensions G=N.Q with N=C3 and Q=C32×C4○D4
extensionφ:Q→Aut NdρLabelID
C3.1(C32×C4○D4) = C4○D4×C3×C9central extension (φ=1)216C3.1(C3^2xC4oD4)432,409
C3.2(C32×C4○D4) = C4○D4×He3central stem extension (φ=1)726C3.2(C3^2xC4oD4)432,410
C3.3(C32×C4○D4) = C4○D4×3- 1+2central stem extension (φ=1)726C3.3(C3^2xC4oD4)432,411

׿
×
𝔽